PAGE

[image: image1.png]
NetLinx Module Interface Specification

for

DBX ZonePRO1260/1, 640/1, 1260/1m, 640/1m
Digital Zone Processor

[image: image2.jpg]
TABLE OF CONTENTS

3Introduction

3Overview

4Implementation

5Command Interface

10String Feedback

16Device Notes

16Programming Notes

17Adding Functions to Modules

17Commands to the device

17Additional Feedback from the device

LIST OF TABLES

10Table 1 – Send Command Definitions

15Table 2 – String Feedback Definitions

 TOC \h \z \c "Table"

	Date
	Initials
	Comments

	08-06-2003
	CN
	Initial release v1.0

	03-27-2009
	JJ (HMG)
	Release v2.0 (HMG)

Added mixer capability. Changed the subscribe message to just subscribe to the objects we care about in order to reduce message traffic. Added new SNAPI command MIXERLEVEL that allows you to change the input levels to the mixer.
Added ‘m’ series support

Added TCP/IP support

Multiple code changes to improve re-connecting issues and overall module stability

	
	
	

	
	
	

	
	
	

Introduction

This is a reference manual to describe the interface provided between an AMX NetLinx system and a DBX ZonePRO1260/1261, 640/641, 1260m/1261m, 640m/641m. The ZonePRO series supports both RS-232 and TCP/IP. The interface was tested using version 2a-1.110 of the ZonePRO1260 firmware and version 02 of the hardware, and version 52-1.000 of the ZonePRO1260m firmware and version 00 of the Hardware, and version 50-1.020 of the ZonePRO640m firmware and version 00 of the Hardware, and version 29-1.110 of the ZonePRO640 firmware and version 02 of the Hardware. The required communication settings are a baud rate of 57600, 8 data bits, 1 stop bit, no parity, and handshaking off. The cable for this device is FG#10-756. You may also use TCP/IP connected to port 3804.

Additional information to connect with the ZonePRO:

To determine which way the device will connect to the with the ZonePRO you must set the variable “serial” to 0 for serial and 1 for TCP/IP or the device will not connect correctly. If you are connecting VIA TCP/IP you also must set the PORT (which should be 3804), and the IP address of the ZonePro. The way the COMM module works to connect with the ZonePRO is that it will send a DISCO message to the ZonePRO and when the COMM module receives a disco back it will then do an object discovery giving the AMX controller the addresses it need to control the objects (NOTE- the AMX has a hardcoded NODE ID of $00, $33 so to avoid address conflictions the ZonePRO NODE ID should be set to something differently, by default the ZP is set to $00, $20). Warning messages will only be sent from the control only if the above happens first.
Overview

The COMM module translates between the standard interface described below and the ZonePRO serial protocol or TCP/IP protocol. It parses the buffer for responses from the audio processor, sends strings to control the audio processor and receives commands from the user interface module or telnet sessions.

A User Interface (UI) module is also provided. This module uses the standard interface described below and parses the string responses for feedback.

The following diagram gives a graphical view of the interface between the interface code and the NetLinx module.

Implementation

To interface to the AMX DBX_ZonePro_COMM module, the programmer must perform the following steps:

1. Define the device ID for the ZonePRO that will be controlled either serial or TCP/IP.

2. Define the virtual device ID that the DBX_ZonePro_COMM COMM module will use to communicate with the main program and User Interface. NetLinx virtual devices start with device number 33001.

3. If a touch panel interface is desired, a touch panel file Testing_panel.TP4 and module DBX_ZonePro_UI.AXS has been created for testing.

4. The NetLinx DBX_ZonePro_COMM module must be included in the program with a DEFINE_MODULE command. This command starts execution of the module and passes in the following key information: the device ID of the ZonePRO to be controlled, and the virtual device ID for communicating to the main program, the device ID for TCP/IP of the ZonePRO to be controlled, and a variable telling whether you’re communicating over serial or TCP/IP.

An example of how to do this is shown below.

DEFINE_DEVICE

 dvDevice

= 5001:1:0
// The ZonePRO connected to the NetLinx on 1st RS-232 port

 dvDBX_IP = 0:2:0 // 0:2:0 is the first available IP port, 0:3:0 is the next, etc.

 dvTouchPanel
= 10001:1:0
// the touch panel used for output

 vdvDevice
= 33001:1:0
// the virtual device use for communication between the

 // Comm. module interface and User Interface (UI) module interface

DEFINE_VARIABLE

//Define arrays of button channels used on your own touch panel

integer nTP_BUTTONS[]={1,2,3,4,5,6,7}

Char cServerAddress [15] = '10.1.5.205' // IP Address of the ZonePro

LONG lServerPort = 3804 // port of the Box

INTEGER serial = 1 // determines if this is to send serial messages or TCP/IP messages. Default is serial.

 // 0 = IP 1 = serial

DEFINE_START
// Place define_module calls to the very end of the define_start section.

// Comm. module

DEFINE_MODULE ‘DBX_ZonePro_COMM’ Comm1 (vdvDevice, dvDevice (serial), dvDevice (IP), INTEGER serial (Boolean 1=serial connection 0 IP = connection))

// Touch panel module

DEFINE_MODULE ‘DBX_ZonePro_UI' TouchPanelA (vdvDevice, dvTouchPanel, nTP_BUTTONS, CHAR [] (ZonePRO IP address), LONG (ZonePRO port should be 3804), INTEGER serial (Boolean 1=serial connection 0 IP = connection))
Upon initialization the AMX Comm module will communicate with the ZonePRO and information will be exchanged.

Command Interface

The UI module controls the level controller via command events (NetLinx command send_command) sent to the COMM module. The commands supported by the COMM module are listed below. All invalid commands will be ignored. Messages from the COMM module to the ZP device will not be sent unless a valid connection is found.
* Denotes an extended command beyond the basic API.

	Command
	Description

	DEBUG=<value>
	Enables or disables the debug feature.

<value>: 0 = off

 1 = on (turns on regular debugging)

 2 = on (turns on comprehensive debugging)

DEBUG=1

Note: The regular debugging will print, in a formatted manner, all received strings (that are valid) and strings that are sent to the device. The comprehensive debugging will print all strings received (valid or invalid) and strings that are sent to the device. The comprehensive mode will not be formatted in any way and it will also print any ACK, NACK, or PING replies received.

	DEBUG?
	Request the state of the debug feature.

DEBUG?

	DELAY=<id>

 :<direction>

 :<number>

 :<value>
	Enables or disables the delay feature.

<id> : 1 = unit id. Always 1

<direction>: O = Output (letter O)

<number> : 1..6 = distinct Output number (varies based

 on number of Delay Objects installed)

<value> : 0 = off

 1 = on

DELAY=1:O:1:1

Note: This command does not receive any unsolicited replies. Use STATUS? Query to retrieve the latest state.

	DEVICE_SCALE=<value>
	Enables or disables the use of the device specific level values. The API supports level values from 0..100 but it might be necessary to use device specific values in certain cases. Default is API.

<value>: 0 = disabled (not using device specific level

 values / using API values)

 1 = enabled (using device specific level

 values / not using API values)

DEVICE_SCALE=1

	DEVICE_SCALE?
	Query the device scale status.

DEVICE_SCALE?

	EQ=<id>

 :<direction>

 :<number>

 :<value>
	Enables or disables the equalizer feature.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

 I = Input

<number> : 1..12 = distinct Input (varies based on the

 number of input equalizers installed)

 1..6 = distinct Output (varies based on the

 number of output equalizers installed)

<value> : 0 = eq disabled

 1 = eq enabled

EQ=1:I:1:0

Note: This command does not receive any unsolicited replies. Use STATUS? Query to retrieve the latest state.

	LEVEL=<id>

 :<direction>

 :<number>

 :<value>
	Adjusts the level value of the input level, router output level, and mixer output level. To change the mixer input levels you must use the MIXERLEVEL command.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

 I = Input

<number> : 1..12 = distinct Input number (varies based

 on the number of distinct inputs

 installed.)

 1..6 = distinct Output zone number

 (varies based on the number of

 switcher/router objects installed)

<value> : 0..100 = API level value

 0..221 = Device specific level value

 + = increment level(only for Outputs)

 - = decrement level(only for Outputs)

LEVEL=1:O:1:50

Note: This command does not receive any unsolicited replies unless making Output Level adjustments. This command has asynchronous feedback for Output only.

Note: The increment/decrement (+/-) is only supported while adjusting the Output level.

	LEVEL?<id>

 :<direction>

 :<number>
	Query the Output level value.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

<number> : 1..6 = distinct zone number (varies based

 on the number of switcher objects installed)

LEVEL?1:O:1

Note: There are no strings sent to the device. This reply reports the level state as it is stored in the communication module.

	MUTE=<id>

 :<direction>

 :<number>

 :<value>
	Mutes or un-mutes a specific channel. This command has asynchronous feedback.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

<number> : 1..6 = distinct zone number (varies based on

 the number of switcher objects installed.)

<value> : 0 = mute off

1 = mute on

T = toggle

MUTE=1:O:1:0

	MUTE?<id>

 :<direction>

 :<number>
	Query the mute settings of a specific channel.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

<number> : 1..6 = distinct zone number (varies based on

 the number of switcher objects installed.)

MUTE?1:O:1

Note: There are no strings sent to the device. This reply reports the mute state as it is stored in the communication module.

	*ONLINE?
	Checks the current state of communications between AMX and the device.

ONLINE?

	*PAGE=<id>

 :<direction>

 :<number>

 :<value>
	Sets the current PAGE mic source selected for an output.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

<number> : 1..6 = distinct zone number (varies based on

 the number of switcher objects installed.)

<value> : 0 = None

1 = Mic Line 1

2 = Mic Line 2

3 = Mic Line 1 & 2

PAGE=1:O:1:0

Note: This command does not receive any unsolicited replies. Use STATUS? query to retrieve the latest state.

	PASSTHRU=<value>
	Allows user the capability of sending commands directly to whatever unit is attached without processing by the NetLinx module. User must be aware of the exact protocol implemented by the unit to use this command. This gives the user access to features that may not be directly supported by the module. The communication module adds the Resync byte ($F0), the start of frame ($64), and the checksum byte automatically and they need NOT be included in the passthru string. For more detailed information on this feature see ‘Adding Functions to Modules’ section at the end of this document.

<string> : string to send to unit

PASSTHRU=RESET

Note: In order to use the RS232 strings generated by the Windows Software provided by DBX, simply add (before the message string) the frame number (usually $00 for open loop implementations). In other words, for example, if the string retrieved from the Windows Application was: $01,$04,$05,$00,$00,$07 then add the frame number before it, so the string that needs to be passed to the passthru command is $00,$01,$04,$05,$00,$00,$07. To retrieve the strings from the Windows app Press <Ctrl><Shift><T>

	POLARITY=<id>

 :<direction>

 :<channel>

 :<value>
	Sets the polarity feature.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

<channel> : 1..6 = output number (not variable)

<value> : 0 = normal (positive)

 1 = invert (negative)

POLARITY=1:O:1:0

Note: This command does not receive any unsolicited replies. Use STATUS? query to retrieve the latest state.

	RECALL=<id>:<preset>
	Recall a scene. This command will not generate any scene information/feedback automatically. You must use the STATUS? query command in order to retrieve the current device settings after a scene has been recalled.

<id> : 1 = id of unit. Always 1

<preset>: 1..50 = number of scene to recall

RECALL=1:20

	*STATUS?
	This will query the DBXZonePRO for all status information. This command will return all status information for all supported objects and updates the stored status information from within the communication module.

STATUS?

Note: DO NOT use this command for routine/frequent queries, as several Kbytes of data are reported when this command is used. It should be used sparingly.

Note: DO NOT send consecutive STATUS? commands unless the previous one has finished processing. Doing so will result in an error message. Please see the STATUS= reply string to determine when the STATUS? has finished processing.

	SWITCH=<id>:<input>:<output>
	Changes the source for routers. This command has asynchronous feedback.

<id> : 1 = id of unit. Always 1

<input> : 0,1..12 = input number (not variable). Use 0 to

 disconnect an output. See

 Programming Notes bullet 10.

<output>: 1..6 = distinct zone number (varies based on

 the number of switcher objects installed.)

SWITCH=1:2:3

	SWITCH?<id>

 :<direction>

 :<channel>
	Queries the switch value of an input or output.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

 I = Input

<channel> : 0,1..12 = Input number (not variable)

 1..6 = distinct zone number (varies based

 on the number of switcher objects installed.)

SWITCH?1:I:4

Note: There are no strings sent to the device. This reply reports the switch state as it is stored in the communication module.

	VERSION?

	Query the communication module version.

VERSION?

	MIXERLEVEL=<id>

 :<I>

 :<number>

 :<input>

 :<value>
	Adjusts the level value of mixer level inputs only. For all other levels use the LEVEL command.

<id> : 1 = id of unit. Always 1

<direction>: I = Input (letter I)

<number> : 1..6 = distinct Output zone number

 (varies based on the number of

 mixer objects installed)

<input> : 1..12 = The selected mixer input to change

 1 = Lobby Mic Level

 2 = Phone Page Level

 3 = CD L Level

 4 = CD R Level

 5 = Satellite L Level

 6 = Satellite R Level

 7 = JukeBox L Level

 8 = JukeBox R Level

 9 = TV L Level

 10 = TV R Level

 11 = DVD L Level

 12 = DVD R Level

<value> : 0..100 = API level value

 0..415 = Device specific level value

 + = increment level(only for Outputs)

 - = decrement level(only for Outputs)

MIXERLEVEL=1:O:1:2:50

Note: This command does not receive any unsolicited replies unless making Output Level adjustments. This command has asynchronous feedback for Output only.

Note: The increment/decrement (+/-) is only supported
while adjusting the Output level.

	TOGGLECONNECT=<id>
	Toggles your connection status. Stops Discos and Pings from being sent out. Must use PASSTHRU to be able to send any messages. The program will not work if this is called unless you call it again or reboot.
<id> : 1 = id of unit. Always 1

TOGGLECONNECT=1

	SUBSCRIBE=<id>:<value>
	Subscribes or unsubscribes to objects that have been discovered previously. Upon start up the driver will automatically subscribe to the discovered objects.

<id> : 1 = id of unit. Always 1

<value> : 0 = unsubscribe to discovered objects

 1 = subscribe to discovered objects
SUBSCRIBE=1:1

	DBXNODE=<id>:<node>
	Gives the COMM the DBX node you would like to connect to. This will cause the program to only use the node that you have sent. It will no longer get the node from the box connected.

<id> : 1 = id of unit. Always 1

<node> : set the DBX node (in HEX) Example: $00,$32

DBXNODE=1:$00,$32

	AMXNODE=<id>:<node>
	Sets the AMX node to the value sent.

<id> : 1 = id of unit. Always 1

<node> : set the AMX node (in HEX) Example: $00,$33

AMXNODE=1:$00,$33

Table 1 – Send Command Definitions
String Feedback

The NetLinx COMM module provides feedback to the User Interface module for the shade changes via string events. The strings supported are listed below.

	String
	Description

	ACK
	Acknowledgement reply. This reply is generated only if a closed loop implementation is used or at initialization, and only if DEBUG=2.

ACK

	CONFIGURATION=I:<inputs>

:M:<mic_mod>

:L:<mod1>:<mod2>[:<mod3>…[:<mod11>]]

:InEQ:<InEQnum>:O:<outputs>

:OutEQ:<OutEQnum>:S:<Snum>:D:<Dnum>
	This reply will be received after each Initialization. It reports the current configuration setup of all the supported Objects found in the ZonePRO. This reply can be used to determine what kind of inputs we have (stereo or mono), how many objects of each type are present, etc… An explanation of each parameter is found below.

Each <parameter> is preceded by a parameter identifier as follows: I = Input Objects, M = mic, L = line, InEQ = Input Equalizer Objects, O = Output Objects, OutEQ = Output Equalizer Objects, S = Switcher Objects, D = Delay Objects

The <parameters> store the following data:

<inputs> : Total number of distinct Inputs installed.

 (Mics & Lines)

<mic_mod> : 0 = Mono Mic

 1 = Stereo Mic

<mod1> : 0 = Mono Line 1

 1 = Stereo Line 1

<mod2> : 0 = Mono Line 2

 1 = Stereo Line 2

<mod3> if installed : 0 = Mono Line 3

 1 = Stereo Line 3

…

<mod11> if installed : 0 = Mono Line 11

<InEQnum> : total number of Input Equalizers installed.

<outputs> : total number of Outputs installed (always 4)

<OutEQnum>: total number of Output Equalizers installed.

<Snum> : total number of Switcher Objects installed.

<Dnum>: total number of Delay Objects installed.

Example:

CONFIGURATION=I:11:M:0:L:1:0:0:0:0:0:0:0:0:InEQ:11:O:6:

OutEQ:6:S:6:D:6

The above configuration shows that we have: 11 distinct Inputs with the Mics (device inputs 1 & 2) being mono and Lines 1 and 2 (device inputs 3 and 4) as stereo; the rest of the input lines are all mono. We have 11 Input Equalizer Objects, 6 Outputs, 6 Output Equalizer Objects, 6 Switcher Objects, and 6 Delay Objects.

Note: The actual mapping of the Mic and Line inputs to the actual device inputs will vary depending on the current device configuration. For example, if device inputs 3 and 4 are setup as stereo, then the pair will count as a single source and the source number is determined by taking the lowest input number of the two. In this case this will be source 3. So if you want to select this source, then you will address it as source 3.

	DEBUG=<value>
	Feedback on the state of the debug feature.

<value>: 0 = off

 1 = on (regular debugging)

 2 = on (comprehensive debugging)

DEBUG=1

	DELAY=<id>

 :<direction>

 :<number>

 :<value>
	Feedback for the delay feature.

<id> : 1 = unit id. Always 1

<direction>: O = Output (letter O)

<number> : 1..6 = Output number(varies based on the

 number of delay objects installed).

<val> : 0 = out

 1 = in

DELAY=1:O:0:1

	DEVICE_SCALE=<value>
	Feedback for the device scale feature.

<value>: 0 = disabled (not using device specific level

 values / using API values)

 1 = enabled (using device specific level

 values / not using API values)

DEVICE_SCALE=1

	ERROR - <message>
	Error feedback received if an invalid command has been received or if a command cannot process.

<message> : text describing the fault.

ERROR – Invalid Mute Command

	EQ=<id>

 :<direction>

 :<number>

 :<value>
	Feedback for the eq feature.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

 I = Input

<number> : 1..12 = Input number

 1..6 = Output number

<value> : 0 = eq off

 1 = eq on

EQ=1:I:1:0

	LABEL=<type>[:<val>]:<text>
	Reports the custom label for each input, output, or last scene recalled.

<type>: I = Input

 O = Output (letter O)

 S = Scene

<val> : reported only if reporting Input or Output Labels

 1..12 = possible Input numbers (varies based on the

 number of distinct inputs installed).

 1..6 = Zone numbers(varies based on the number of

 distinct switcher/router objects installed).

<text> : actual label text

LABEL=S:Default

LABEL=I:1:Lobby MIC

	LEVEL=<id>

 :<direction>

 :<number>

 :<value>
	Feedback for level value of the input level, router output level, and mixer output level.
<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

 I = Input

<number> : 1..12 = Input number

 1..6 = Output/Zone number

<value> : 0..100 = API level value

 0..221 = Device specific level values

LEVEL=1:I:1:50

	NACK
	Negative Acknowledgement reply. This reply is generated only if a closed loop implementation is used and only if DEBUG=2.

NACK

	MUTE=<id>

 :<direction>

 :<number>

 :<value>
	Feedback detailing the current mute state.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

<number> : 1..6 = Output/Zone number

<value> : 0 = mute off

 1 = mute on

MUTE=1:O:1:0

	ONLINE=<value>
	Reports the current state of communications between AMX and the ZonePRO.

<value>: 0 = Offline

 1 = Online

ONLINE=1

	PAGE=<id>

 :<direction>

 :<number>

 :<value>
	Reports the current page source for the outputs.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

<number> : 1..6 = Output/Zone number

<value> : 0 = none

1 = Mic Line 1

2 = Mic Line 2

3 = Mic Line 1 & 2

	PING
	Unsolicited reply received to signal the receipt of a ping byte while the device is ONLINE. This reply is received only if DEBUG=2.

PING

	POLARITY=<id>

 :<direction>

 :<number>

 :<value>
	Feedback for the polarity feature.

<id> : 1 = id of unit. Always 1

<direction>: O = Output (letter O)

<number> : 1..6 = Output number

<value> : 0 = normal (positive)

 1 = invert (negative)

POLARITY=1:O:1:0

	STATUS=<message>
	Reports the state of execution of the STATUS? query or the initialization sequence.

<message>: START = started execution as a result of a

 manual STATUS? query

 RETRIEVING…= started execution as a result of

 an automatic update performed by the

 communication module.

 DONE = finished execution.

STATUS=RETRIEVING…

STATUS=DONE

	SWITCH=<id>:<input>:<output>
	Feedback to the switch query.

<id> : 1 = id of unit. Always 1

<input> : 0,1..12 = input number; 0= means no input

<output>: 1..6 = output/zone number

SWITCH=1:2:3

SWITCH=1:0:3 (output 3 not connected to anything)

Note: See Programming Notes section bullet 11 regarding device configuration settings.

	VERSION=<value>
	Communication module version feedback.

<value> : current version number in xx.yy format

VERSION=1.0

	MIXERLEVEL=<id>

 :<direction>

 :<number>

 :<input>

 :<value>

	Feedback for the mixer input level only.

<id> : 1 = id of unit. Always 1

<direction>: I = Output (letter I)

<number> : 1..6 = Output/Zone number

<input> : 1..12 = mixer input

<value> : 0..100 = API level value

 0..415 = Device specific level values

MIXERLEVEL=1:O:1:2:50

	SUBSCRIBE=<id>:<value>
	Subscribes or unsubscribes to objects that have been discovered previously. Upon start up the driver will automatically subscribe to the discovered objects.

<id> : 1 = id of unit. Always 1

<value> : 0 = unsubscribe to discovered objects

 1 = subscribe to discovered objects

SUBSCRIBE=1:1

	DBXNODE=<node>
	Gives the COMM the DBX node you would like to connect to. This will cause the program to only use the node that you have sent. It will no longer get the node from the box connected.

<id> : 1 = id of unit. Always 1

<node> : set the DBX node (in HEX) Example: $00,$32

DBXNODE=$00,$32

	AMXNODE=<node>
	Sets the AMX node to the value sent.

<id> : 1 = id of unit. Always 1

<node> : set the AMX node (in HEX) Example: $00,$33

AMXNODE=$00,$33

Table 2 – String Feedback Definitions

Device Notes

· The ZonePro has a total of 12 inputs or 6 inputs (for 640/1, 640m/1m) and 6 outputs or 4 outputs (for 640/1, 640m/1m) which in turn, can be configured as stereo or mono.

· The ZonePro is a fully configurable device (by using the ZonePro Designer Windows Software provided by DBX). Each configuration will add/remove Objects (such as Input Equalizers, Routers/Switchers, etc…) therefore while issuing commands to the device, one must be aware of the current device configuration. Other features of the ZonePRO will remain unaltered no matter the setup configuration.

Programming Notes

· If the configuration of the DBXZone Pro is changed by the Windows application in any way, the AMX system must be rebooted in order to reflect the new changes. In rare cases, if after a reboot of the AMX system, no STATUS information is reported by the module automatically, then you will need to reboot the AMX system again.

· The communication module supports the following objects for both mono and stereo configurations: Inputs (IN), Input Equalizers(EQ), Switchers/Routers (RTE), Mixers, Output Equalizers(EQ), Delay(DLY), and Outputs(OUT). These objects can be viewed in the ZonePro Designer Windows Software (Program Screen).

· The sample User Interface code and Touch Panel file can be used as is with the .ZPD file provided. Some features supported by the communication module are not supported by the sample User Interface therefore code must be written for those feature.

· Some commands do not receive a reply unless the STATUS? query is used. All such commands have a note. For this reason, ramping is not supported for those commands.

· While using the LEVEL= command, direct values are supported for both API (percentages) and Device specific values. To use one or the other, please see DEVICE_SCALE= command.

· The communication module will initialize the ZonePRO and gather data automatically upon a successful connection to the device. Periodically (every 1 second) the communication module will ping the device as required by the RS232 protocol in order to keep an active connection.

· The communication module will maintain and enforce the current device configuration. In other words, one must be aware of the current device configuration before sending commands to the communication module. If a command is received by the communication module that based on the current device configuration is not valid, an error will be returned and the command will not execute.

· While issuing SWITCH= and SWITCH? commands, the input numbers should remain unaltered for all device setup configurations. For the SWITCH command, all and any configuration will have 12 inputs (numbered 1 through 12). For example, if input lines 3 and 4 are configured as a stereo source, then you will address that source as input 3. The next input source would be 5.

Adding Functions to Modules

Commands to the device

This module supplies a mechanism to allow additional device features to be added to software using the module. This is the PASSTHRU command, which allows protocol strings to be passed through the module. The device-specific protocol must be known in order to use this feature.

As an example, suppose that a module for a projector has not implemented the 'white balance adjustment' feature. The command that the projector protocol requires is 03H, 10H, 05H, 14H, followed by a checksum. The documentation for the PASSTHRU command specifies that the module will automatically generate the checksum. In this case, the following string should be sent from

the UI code to implement 'white balance adjustment'.

send_command vdvDevice,"'PASSTHRU=',$03,$10,$05,$14"

The reason to use PASSTHRU instead of sending a protocol string directly to the device port is that the device may require command queuing, calculation of checksums, or other internal processing, which would not be done if the string was sent directly. Because of this, it is best to filter all communication TO the device through the module. (The module documentation will indicate any processing that will be automatically done to the PASSTHRU string like checksum calculation.)

Additional Feedback from the device

The module documentation indicates what feedback is provided. If additional feedback is required, a CREATE_BUFFER for the device must be implemented in the user code to process the strings from the device manually. Note that the module will still be processing the response strings independently

and sending the interpreted feedback up to the user code.

Virtual

Device

NetLinx

UI Module

NetLinx

COMM Module

Sound

Processor

PAGE
16
AMX (3000 Research Drive (Richardson, TX (75082

469.624.8000 (800.222.0193 (469.624.7153 (fax)

